# New Conjectural Lower Bounds on the Optimal Density of Sphere Packings

@article{Torquato2006NewCL, title={New Conjectural Lower Bounds on the Optimal Density of Sphere Packings}, author={Salvatore Torquato and Frank H. Stillinger}, journal={Experimental Mathematics}, year={2006}, volume={15}, pages={307 - 331} }

Sphere packings in high dimensions interest mathematicians and physicists and have direct applications in communications theory. Remarkably, no one has been able to provide exponential improvement on a hundred-year-old lower bound on the maximal packing density due to Minkowski in d-dimensional Euclidean space ℝ d . The asymptotic behavior of this bound is controlled by 2-d in high dimensions. Using an optimization procedure that we introduced earlier [Torquato and Stillinger 02] and a… Expand

#### Topics from this paper

#### 107 Citations

Estimates of the optimal density of sphere packings in high dimensions

- Mathematics, Physics
- 2008

The problem of finding the asymptotic behavior of the maximal density ϕmax of sphere packings in high Euclidean dimensions is one of the most fascinating and challenging problems in discrete… Expand

Sphere packing and quantum gravity

- Physics, Mathematics
- 2019

We establish a precise relation between the modular bootstrap, used to constrain the spectrum of 2D CFTs, and the sphere packing problem in Euclidean geometry. The modular bootstrap bound for chiral… Expand

Densest local sphere-packing diversity: general concepts and application to two dimensions.

- Mathematics, Medicine
- Physical review. E, Statistical, nonlinear, and soft matter physics
- 2010

This paper finds the putative densest packings and corresponding Rmin(N) for selected values of N up to N=348 and uses this knowledge to construct such a realizability condition and an upper bound on the maximal density of infinite sphere packings in Rd. Expand

Efficient linear programming algorithm to generate the densest lattice sphere packings.

- Mathematics, Medicine
- Physical review. E, Statistical, nonlinear, and soft matter physics
- 2013

The Torquato-Jiao packing algorithm is applied, which is a method based on solving a sequence of linear programs, to robustly reproduce the densest known lattice sphere packings for dimensions 2 through 19 and it is shown that the TJ algorithm is appreciably more efficient at solving these problems than previously published methods. Expand

Packing hyperspheres in high-dimensional Euclidean spaces.

- Mathematics, Physics
- Physical review. E, Statistical, nonlinear, and soft matter physics
- 2006

Although the stable phase at high density is a crystalline solid, nucleation appears to be strongly suppressed with increasing dimension, consistent with a recently proposed "decorrelation principle". Expand

Random perfect lattices and the sphere packing problem.

- Mathematics, Physics
- Physical review. E, Statistical, nonlinear, and soft matter physics
- 2012

It is found that, even at infinite temperature, the typical perfect lattices are considerably denser than known families (like A(d) and D(d)), and a competitor in which their packing fraction decreases superexponentially is proposed, namely, φ~d(-ad) but with a very small coefficient a=0.04. Expand

Hyperuniformity order metric of Barlow packings.

- Medicine, Physics
- Physical review. E
- 2019

The geometry of three classes of Barlow packings, which are the infinitely degenerate densest packings of identical rigid spheres that are distinguished by their stacking geometries, is described and it is found that the value of Λ[over ¯] of all BarlowPackings is primarily controlled by the local cluster geometry. Expand

Spherical codes, maximal local packing density, and the golden ratio

- Mathematics, Physics
- 2010

The densest local packing (DLP) problem in d-dimensional Euclidean space Rd involves the placement of N nonoverlapping spheres of unit diameter near an additional fixed unit-diameter sphere such that… Expand

ON THE HARD SPHERE MODEL AND SPHERE PACKINGS IN HIGH DIMENSIONS

- Mathematics, Physics
- Forum of Mathematics, Sigma
- 2019

We prove a lower bound on the entropy of sphere packings of $\mathbb{R}^{d}$ of density $\unicode[STIX]{x1D6E9}(d\cdot 2^{-d})$ . The entropy measures how plentiful such packings are, and our result… Expand

Cavity approach to sphere packing in Hamming space.

- Mathematics, Medicine
- Physical review. E, Statistical, nonlinear, and soft matter physics
- 2012

It is shown that both the replica symmetric and the replica symmetry breaking approximations give maximum rates of packing that are asymptotically the same as the lower bound of Gilbert and Varshamov. Expand

#### References

SHOWING 1-10 OF 82 REFERENCES

Exactly solvable disordered sphere-packing model in arbitrary-dimensional Euclidean spaces.

- Mathematics, Physics
- Physical review. E, Statistical, nonlinear, and soft matter physics
- 2006

The results suggest that the densest packings in sufficiently high dimensions may be disordered rather than periodic, implying the existence of disordered classical ground states for some continuous potentials. Expand

Finite and Uniform Stability of Sphere Packings

- Mathematics, Computer Science
- Discret. Comput. Geom.
- 1998

It is shown that many of the usual best-known candidates, for the most dense packings with congruent spherical balls, have the property of being uniformly stable, i.e., for a sufficiently small ε > 0 every finite rearrangement of the balls of this packing, where no ball is moved more than ε, is the identity rearrangements. Expand

Sphere packings, I

- Mathematics, Computer Science
- Discret. Comput. Geom.
- 1997

A program to prove the Kepler conjecture on sphere packings is described and it is shown that every Delaunay star that satisfies a certain regularity condition satisfies the conjecture. Expand

The Kepler conjecture

- Mathematics
- 1998

This is the eighth and final paper in a series giving a proof of the Kepler conjecture, which asserts that the density of a packing of congruent spheres in three dimensions is never greater than… Expand

A linear programming algorithm to test for jamming in hard-sphere packings

- Materials Science, Physics
- 2002

Jamming in hard-particle packings has been the subject of considerable interest in recent years. In a paper by Torquato and Stillinger [J. Phys. Chem. B 105 (2001)], a classification scheme of jammed… Expand

Jamming in hard sphere and disk packings

- Physics
- 2004

Hard-particle packings have provided a rich source of outstanding theoretical problems and served as useful starting points to model the structure of granular media, liquids, living cells, glasses,… Expand

Sphere Packings, Lattices and Groups

- Mathematics, Computer Science
- Grundlehren der mathematischen Wissenschaften
- 1988

The second edition of this book continues to pursue the question: what is the most efficient way to pack a large number of equal spheres in n-dimensional Euclidean space? The authors also continue to… Expand

Pair correlation function characteristics of nearly jammed disordered and ordered hard-sphere packings.

- Mathematics, Physics
- Physical review. E, Statistical, nonlinear, and soft matter physics
- 2005

The computational data unambiguously separate the narrowing delta -function contribution to g(2) due to emerging interparticle contacts from the background contribution due to near contacts and find that ordering has a significant impact on the shape of P(f) for small forces. Expand

Aspects of correlation function realizability

- Physics
- 2003

The pair-correlation function g2(r) describes short-range order in many-particle systems. It must obey two necessary conditions: (i) non-negativity for all distances r, and (ii) non-negativity of its… Expand

Controlling the Short-Range Order and Packing Densities of Many-Particle Systems†

- Physics, Mathematics
- 2002

Questions surrounding the spatial disposition of particles in various condensed-matter systems continue to pose many theoretical challenges. This paper explores the geometric availability of… Expand