# Ex 13.2, 7 - Chapter 13 Class 12 Probability (Term 2)

Last updated at Feb. 15, 2020 by Teachoo

Last updated at Feb. 15, 2020 by Teachoo

Transcript

Ex 13.2, 7 (i) Given that the events A and B are such that P(A) = 1/2 , P (A ∪ B) = 3/5 and P(B) = p. Find p if they are (i) mutually exclusiveGiven, P(A) = 1/2 , P (A ∪ B) = 3/5 and P(B) = p. Given sets A & B are mutually exclusive, So, they have nothing in common ∴ P(A ∩ B) = 0 We know that P(A ∪ B) = P(A) + P(B) – P(A ∩ B) Putting values 3/5 = 1/2 + p – 0 3/5 – 1/2 = p (6 − 5)/10 = p 1/10 = p p = 𝟏/𝟏𝟎 Ex 13.2, 7 (ii) Given that the events A and B are such that P(A) = 1/2 , P (A ∪ B) = 3/5 and P(B) = p. Find p if they are (ii) independent.Since events A & B are independent, So, P(A ∩ B) = P(A) P(B) = 1/2 × p = 𝑝/2 Now, P(A ∪ B) = P(A) + P(B) – P(A ∩ B) Putting values 3/5 = 1/2 + p – 𝑝/2 3/2 – 1/2 = p – 𝑝/2 (6 − 5)/10 = 𝑝/2 1/10 = 𝑝/2 p = 2/10 p = 𝟏/𝟓

Ex 13.2

Ex 13.2, 1

Ex 13.2, 2

Ex 13.2, 3 Important

Ex 13.2, 4

Ex 13.2, 5

Ex 13.2, 6

Ex 13.2, 7 Important You are here

Ex 13.2, 8

Ex 13.2, 9 Important

Ex 13.2, 10 Important

Ex 13.2, 11 (i)

Ex 13.2, 11 (ii) Important

Ex 13.2, 11 (iii)

Ex 13.2, 11 (iv) Important

Ex 13.2, 12

Ex 13.2, 13 Important

Ex 13.2, 14 Important

Ex 13.2, 15 (i)

Ex 13.2, 15 (ii)

Ex 13.2, 15 (iii) Important

Ex 13.2, 16 Important

Ex 13.2, 17 (MCQ)

Ex 13.2, 18 (MCQ) Important

Chapter 13 Class 12 Probability (Term 2)

Serial order wise

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 10 years. He provides courses for Maths and Science at Teachoo.